“…Strigolactones initiate arbuscular mycorrhizal symbiosis (Akiyama et al, 2005;Taulera et al, 2020), promote nodulation in the legume-rhizobium symbiosis interaction (Foo et al, 2014;van Zeijl et al, 2015;McAdam et al, 2017), and enhance plant resistance to drought, salt and osmotic stresses, and low soil phosphate and nitrate content (Yoneyama et al, 2007;Foo et al, 2013;Ha et al, 2014;Min et al, 2019). The physiological effects of strigolactones on the aboveground plant part include: (i) regulation of plant height (de Saint Germain et al, 2013;Wang et al, 2020b), (ii) control of shoot branching by modulating auxin transport (Kapulnik et al, 2011;Shinohara et al, 2013;Bennett et al, 2016), (iii) suppression of the preformed axillary bud outgrowth (Gomez-Roldan et al, 2008;Umehara et al, 2008;Domagalska and Leyser, 2011), (iv) increased expansion of leaves (Hu et al, 2019) and cotyledons (Tsuchiya et al, 2010), (v) rescue of the dark-induced elongation of rice mesocotyls (Hu et al, 2010;Sun et al, 2018), (vi) promotion of the secondary growth (Agusti et al, 2011), (vii) regulation of meristem cell number in the root (Koren et al, 2013), and (viii) stimulation of leaf senescence (Koltai, 2014;Ueda and Kusaba, 2015). Furthermore, the synthetic strigolactone GR24 acts synergistically with auxins and it is involved in Arabidopsis seed germination (Toh et al, 2012), potato tuber formation, the outgrowth of the axillary stolon buds, and aboveground potato shoot branching (Roumeliotis et al, 2012).…”