<abstract>
<p>Infection caused by pathogenic fungal species is one of the most challenging disease to be tackled today. The antifungal bacteria candidate can be found in terrestrial as well as aquatic ecosystems, with mangrove forests being one of them. The purpose of this study is to obtain candidate isolates of antifungal strains with a detection approach and gene mapping simulation of bioactive compounds producers and screening to determine qualitative antifungal activity. The research will be carried out by collecting sediment samples from the mangrove ecosystems of Karimunjawa and Mangkang sub-district of Semarang city, isolating and purifying bacteria with Humic Acid Vitamin Agar (HVA), International Streptomyces Project 1 (ISP 1) and Zobell (Marine Agar). added with antibiotics, qualitative antifungal ability screening of each isolate obtained, detection of the presence of PKS gene and NRPS using special primers using the Polymerase Chain Reaction (PCR) method, and molecular identification of each isolate by 16s rRNA sequencing method. Of the total 59 isolates produced from the sample isolation process, 31 isolates from Karimunjawa sediments and 8 isolates from Semarang sediments showed activity against test pathogenic bacteria, namely <italic>Candida albicans</italic>, <italic>Trichoderma</italic> sp., and <italic>Aspergillus niger</italic>. Detection of Biosynthethic Gene Cluster (BGC) showed that the genes encoding secondary metabolites (NRPS, PKS 1 and PKS 2) were detected in KI 2-2 isolates from Karimunjawa. NRPS were detected only in isolates SP 3-9, SH 3-4, KI 1-6, KI 2-2, KI 2-4. The secondary metabolite-encoding gene, PKS1, was detected in isolates SP 3-5, SP 3-8, KI 2-2. PKS II genes were detected only on isolates SP 2-4, SH 3-8, KI 1-6, KI 2-2, and KI 2-4. Isolate SP 3-5 was revealed as <italic>Pseudomonas aeruginosa</italic> (93.14%), isolate SP 2-4 was <italic>Zhouia amylolytica</italic> strain HN-181 (100%) and isolate SP 3-8 was <italic>P. aeruginosa</italic> strain QK -2 (100%).</p>
</abstract>