Thermal stress increases the incidence of coral disease, which is predicted to become more common with climate change, even on pristine reefs such as those surrounding Palmyra Atoll in the Northern Line Islands that experience minimal anthropogenic stress. Here we describe a strain of Vibrio coralliilyticus, OCN014, which was isolated from Acropora cytherea during an outbreak of Acropora white syndrome (AWS), a tissue loss disease that infected 25% of the A. cytherea population at Palmyra Atoll in 2009. OCN014 recreated signs of disease in experimentally infected corals in a temperature-dependent manner. Genes in OCN014 with expression levels positively correlated with temperature were identified using a transposon-mediated genetic screen. Mutant strains harbouring transposon insertions in two such genes, toxR (a toxin regulator) and mshA (the 11th gene of the 16-gene mannose-sensitive hemagglutinin (MSHA) type IV pilus operon), had reduced infectivity of A. cytherea. Deletion of toxR and the MSHA operon in a second strain of V. coralliilyticus, OCN008, that induces acute Montipora white syndrome in a temperature-independent manner had similarly reduced virulence. This work provides a link between temperature-dependent expression of virulence factors in a pathogen and infection of its coral host.