To the best of our knowledge, this is the first report of phage therapy in a mouse model against a multiple-antibiotic–resistant V. parahaemolyticus pandemic strain infection.
Background: Accurate determination of orthology is central to comparative genomics. For vertebrates in particular, very large gene families, high rates of gene duplication and loss, multiple mechanisms of gene duplication, and high rates of retrotransposition all combine to make inference of orthology between genes difficult. Many methods have been developed to identify orthologous genes, mostly based upon analysis of the inferred protein sequence of the genes. More recently, methods have been proposed that use genomic context in addition to protein sequence to improve orthology assignment in vertebrates. Such methods have been most successfully implemented in fungal genomes and have long been used in prokaryotic genomes, where gene order is far less variable than in vertebrates. However, to our knowledge, no explicit comparison of synteny and sequence based definitions of orthology has been reported in vertebrates, or, more specifically, in mammals.
There is an increasing emergence of antibiotic-resistant
Vibrio alginolyticus
, a zoonotic pathogen that causes mass mortality in aquatic animals and infects humans; therefore, there is a demand for alternatives to antibiotics for the treatment and prevention of infections caused by this pathogen. One possibility is through the exploitation of bacteriophages. In the present study, the novel bacteriophage pVa-21 was classified as
Myoviridae
and characterised as a candidate biocontrol agent against
V. alginolyticus
. Its morphology, host range and infectivity, growth characteristics, planktonic or biofilm lytic activity, stability under various conditions, and genome were investigated. Its latent period and burst size were estimated to be approximately 70 min and 58 plaque-forming units/cell, respectively. In addition, phage pVa-21 can inhibit bacterial growth in both the planktonic and biofilm states. Furthermore, phylogenetic and genome analysis revealed that the phage is closely related to the giant phiKZ-like phages and can be classified as a new member of the phiKZ-like bacteriophages that infect bacteria belonging to the family
Vibrionaceae
.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.