There is an increasing emergence of antibiotic-resistant Vibrio alginolyticus , a zoonotic pathogen that causes mass mortality in aquatic animals and infects humans; therefore, there is a demand for alternatives to antibiotics for the treatment and prevention of infections caused by this pathogen. One possibility is through the exploitation of bacteriophages. In the present study, the novel bacteriophage pVa-21 was classified as Myoviridae and characterised as a candidate biocontrol agent against V. alginolyticus . Its morphology, host range and infectivity, growth characteristics, planktonic or biofilm lytic activity, stability under various conditions, and genome were investigated. Its latent period and burst size were estimated to be approximately 70 min and 58 plaque-forming units/cell, respectively. In addition, phage pVa-21 can inhibit bacterial growth in both the planktonic and biofilm states. Furthermore, phylogenetic and genome analysis revealed that the phage is closely related to the giant phiKZ-like phages and can be classified as a new member of the phiKZ-like bacteriophages that infect bacteria belonging to the family Vibrionaceae .
Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate and characterize other jumbo phages. We performed comparative genomic analysis of three Erwinia phages (pEa_SNUABM_12, pEa_SNUABM_47, and pEa_SNUABM_50), each of which had a genome size of approximately 360 kb (32.5% GC content). These phages were predicted to harbor 546, 540, and 540 open reading frames with 32, 34, and 35 tRNAs, respectively. Almost all of the genes in these phages could not be functionally annotated but showed high sequence similarity with genes encoded in Serratia phage BF, a member of Eneladusvirus. The detailed comparative and phylogenetic analyses presented in this study contribute to our understanding of the diversity and evolution of Erwinia phage and the genus Eneladusvirus.
Harmful effects of heavy metals are myriad. Lead (Pb) from soil and atmosphere contaminates water bodies and affects the aquatic animals. Our previous study confirmed the in vitro probiotic potential of Lactobacillus reuteri against Pb toxicity, but further investigation is necessary for gaining insights into the related protection mode. Therefore, in this study, we investigated the protective effects of the potential probiotic L. reuteri P16 against waterborne Pb exposure-induced toxicity in the freshwater fish Cyprinus carpio. Fish (average weight: 23.16 ± 0.73 g) were allocated to four groups (control, Pb only, Pb + L. reuteri P16, and L. reuteri P16 only) and Pb groups were exposed to waterborne Pb (1 mg L−1) for 6 weeks. L. reuteri P16 (108 CFU g−1) supplemented diet was provided twice daily. Growth performances, hemato-biochemical parameters, innate immune responses, intestinal microbiota, and Pb accumulation in tissues were measured at the end of the trial. When the fish were exposed to Pb, dietary supplementation of L. reuteri P16 effectively decreased mortality and accumulation of Pb in tissues, and improved the growth performance. Co-treatment with Pb and L. reuteri P16 alleviated Pb exposure-induced oxidative stress, reversed alterations in hemato-biochemical parameters, improved innate immune parameters, and restored intestinal enzymatic activities. Moreover, L. reuteri P16 supplementation reversed the changes in intestinal microbiota in Pb-exposed fish. Furthermore, Pb exposure decreased the expressions of pro-inflammatory cytokines (TNF-α, IL-1β). However, the expression of heat shock proteins (HSP70 and HSP90) increased, which might have increased the cellular stress. Interestingly, the Pb-induced alterations of gene expressions were reversed by L. reuteri P16 supplementation. Thus, dietary administration of the potential probiotic L. reuteri P16 had several beneficial effects on growth performance and immune responses, decreased Pb accumulation in tissues, and reversed alterations in hematological responses of C. carpio. Furthermore, it offered direct protection against Pb-induced oxidative stress. Therefore, L. reuteri P16 may be a novel dietary supplement for enhancing growth performance and preventing Pb-exposure-induced toxicity in fish in aquaculture and aquatic products.
Shark meat is consumed as a food source worldwide, especially in Asian countries. However, since sharks are apex predators in the ocean food chain, they are prone to bioaccumulation of heavy metals. More than 100 million sharks are caught annually for human consumption, and the safety of shark meat cannot be overemphasized. Here, we examined heavy metal concentration in the muscle tissue of 6 shark species including 3 migratory species (Carcharhinus brachyurus, Carcharhinus obscurus, and Isurus oxyrinchus) and 3 local species (Triakis scyllium, Mustelus manazo, and Cephaloscyllium umbratile) from fish markets in Jeju Island, Republic of Korea. The concentrations of 11 heavy metals (Cr, Fe, Cu, Zn, As, Se, Cd, Sn, Sb, Pb, and Hg) and MeHg were analyzed. The result showed that the average concentrations of all metals, except for that of As, were below the regulatory maximum limits of many organizations, including the Codex standard. Hg and MeHg were significantly correlated with body length, body weight, and age, and the concentration of Hg was expected to exceed the limit in C. brachyurus with a body length or weight of over 130 cm or 25 kg, respectively. Our results indicate that shark meat can expose consumers to a high level of As and that copper sharks bigger than the predicted size should be avoided for excessive Hg. Considering these findings, a detailed guideline on consumption of meat of different shark species should be suggested based on further investigation.
Acute hepatopancreatic necrosis disease (AHPND) caused by has been one of the most problematic diseases in marine shrimp aquaculture throughout Southeast Asia and Latin America. To evaluate the effectiveness of a bacteriophage (phage) treatment for AHPND, a series of bioassays were carried out in a marine shrimp () model using an AHPND- strain that is highly pathogenic to shrimp. We monitored the mortality and histopathological changes during phage treatment. Shrimps treated with phage prophylaxis and phage therapy displayed significant protection from AHPND and survived a lethal bacterial challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.