Mastitis is a common and costly disease on dairy farms, commonly caused by Staphylococcus spp. though the various species are associated with different clinical outcomes. In the current study, we performed genomic analyses to determine the prevalence of adhesion, biofilm, and related regulatory genes in 478 staphylococcal species isolated from clinical and subclinical mastitis cases deposited in public databases. The most prevalent adhesin genes (ebpS, atl, pls, sasH and sasF) were found in both clinical and subclinical isolates. However, the ebpS gene was absent in subclinical isolates of Staphylococcus arlettae, S. succinus, S. sciuri, S. equorun, S. galinarum, and S. saprophyticus. In contrast, the coa, eap, emp, efb, and vWbp genes were present more frequently in clinical (vs. subclincal) mastitis isolates and were highly correlated with the presence of the biofim operon (icaABCD) and its transcriptional regulator, icaR. Co-phylogenetic analyses suggested that many of these adhesins, biofilm, and associated regulatory genes could have been horizontally disseminated between clinical and subclinical isolates. Our results further suggest that several adhesins, biofilm, and related regulatory genes, which have been overlooked in previous studies, may be of use for virulence profiling of mastitis-related Staphylococcus strains or as potential targets for vaccine development.