Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ranunculus (Ranunculus asiaticus L.) is a popular ornamental plant mainly cultivated for cut flowers and flowering potted plants. In January 2021, a leaf sample of R. asiaticus that showed virus-like symptoms including mosaic, yellowing and malformation on leaves was collected from a greenhouse in Jangheung, South Korea for disease diagnosis (Fig. S1). Disease incidence was greater than 30% in the greenhouse (~1,000 m2). Transmission electron microscopy (TEM) of symptomatic leaves identified potyvirus-like filamentous virus particles of about 800 nm. To confirm the TEM results, a symptomatic leaf sample was further analyzed by reverse-transcription polymerase chain reaction (RT-PCR) using species-specific detection primers for six potyviruses that infect R. asiaticus (Sacco et al., 2018). The sample was positive only for ranunculus mild mosaic virus (RanMMV). Additional analysis of nine symptomatic R. asiaticus plants from the infected greenhouse found that all samples were positive for RanMMV. To exclude the presence of the other viruses, next generation sequencing (NGS) was carried out. Total RNA was extracted from symptomatic leaves using the RNeasy Plant Mini Kit (Qiagen, Germany) and a transcriptome library was generated using the TruSeq Stranded Total RNA LT Sample Prep kit (Illumina, San Diego, CA) acccording to the recommended protocol. NGS was performed using an Illumina NovaSeq 6000 system (Macrogen Inc., Korea). A total of 75.58 million reads were obtained, and the reads were de novo assembled to contigs using Trinity software (Grabherr et al., 2011). BLASTn and BLASTx analysis of the contigs against the NCBI viral reference database identified the assembled large contig of 9,539 nt (5,321 mapped reads, mean read coverage of 84.2 times) as RanMMV. This sequence shared 98% nt identity (99% coverage) with the RanMMV NL isolate (acc. no. LC604020) isolated from an anemone plant (A. blanda cv. Charmer) from Netherlands. To obtain the complete genome sequence, the termini sequences were determined by 5′ and 3′ rapid amplification of cDNA ends (RACE) methods as reported recently (Imamura et al., 2021). The assembled full-length genome sequence of RanMMV-JH is 9,574 nt in length, excluding the poly(A) tail, and encoding a polyprotein of 3,074aa. The sequence was deposited in GenBank under the accession no. OL742438. RanMMV is transmitted by aphids in a nonpersistent manner and has very narrow host range. RanMMV, one of causative agents of ranunculus mosaic disease, has been problematic in ranunculus production area of Japan (Hayahi et al., 2018; Kamikawa et al., 2022). Recently, some perennial weeds from the Ranunculaceae family (e.g. R. japonicus, R. silerifolius and R. tachiroei) are known to may act as a virus reservoir (Kamikawa et al., 2022). As R. asiaticus is cultivated by vegetative propagation, there is need to develop certification system for producing virus-free R. asiaticus. To our knowledge, this is the first report of RanMMV infection in R. asiaticus in Korea.
Ranunculus (Ranunculus asiaticus L.) is a popular ornamental plant mainly cultivated for cut flowers and flowering potted plants. In January 2021, a leaf sample of R. asiaticus that showed virus-like symptoms including mosaic, yellowing and malformation on leaves was collected from a greenhouse in Jangheung, South Korea for disease diagnosis (Fig. S1). Disease incidence was greater than 30% in the greenhouse (~1,000 m2). Transmission electron microscopy (TEM) of symptomatic leaves identified potyvirus-like filamentous virus particles of about 800 nm. To confirm the TEM results, a symptomatic leaf sample was further analyzed by reverse-transcription polymerase chain reaction (RT-PCR) using species-specific detection primers for six potyviruses that infect R. asiaticus (Sacco et al., 2018). The sample was positive only for ranunculus mild mosaic virus (RanMMV). Additional analysis of nine symptomatic R. asiaticus plants from the infected greenhouse found that all samples were positive for RanMMV. To exclude the presence of the other viruses, next generation sequencing (NGS) was carried out. Total RNA was extracted from symptomatic leaves using the RNeasy Plant Mini Kit (Qiagen, Germany) and a transcriptome library was generated using the TruSeq Stranded Total RNA LT Sample Prep kit (Illumina, San Diego, CA) acccording to the recommended protocol. NGS was performed using an Illumina NovaSeq 6000 system (Macrogen Inc., Korea). A total of 75.58 million reads were obtained, and the reads were de novo assembled to contigs using Trinity software (Grabherr et al., 2011). BLASTn and BLASTx analysis of the contigs against the NCBI viral reference database identified the assembled large contig of 9,539 nt (5,321 mapped reads, mean read coverage of 84.2 times) as RanMMV. This sequence shared 98% nt identity (99% coverage) with the RanMMV NL isolate (acc. no. LC604020) isolated from an anemone plant (A. blanda cv. Charmer) from Netherlands. To obtain the complete genome sequence, the termini sequences were determined by 5′ and 3′ rapid amplification of cDNA ends (RACE) methods as reported recently (Imamura et al., 2021). The assembled full-length genome sequence of RanMMV-JH is 9,574 nt in length, excluding the poly(A) tail, and encoding a polyprotein of 3,074aa. The sequence was deposited in GenBank under the accession no. OL742438. RanMMV is transmitted by aphids in a nonpersistent manner and has very narrow host range. RanMMV, one of causative agents of ranunculus mosaic disease, has been problematic in ranunculus production area of Japan (Hayahi et al., 2018; Kamikawa et al., 2022). Recently, some perennial weeds from the Ranunculaceae family (e.g. R. japonicus, R. silerifolius and R. tachiroei) are known to may act as a virus reservoir (Kamikawa et al., 2022). As R. asiaticus is cultivated by vegetative propagation, there is need to develop certification system for producing virus-free R. asiaticus. To our knowledge, this is the first report of RanMMV infection in R. asiaticus in Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.