2015
DOI: 10.37236/4387
|View full text |Cite
|
Sign up to set email alerts
|

Completing Partial Proper Colorings using Hall's Condition

Abstract: In the context of list-coloring the vertices of a graph, Hall's condition is a generalization of Hall's Marriage Theorem and is necessary (but not sufficient) for a graph to admit a proper list-coloring. The graph $G$ with list assignment $L$ satisfies Hall's condition if for each subgraph $H$ of $G$, the inequality $|V(H)| \leq \sum_{\sigma \in \mathcal{C}} \alpha(H(\sigma, L))$ is satisfied, where $\mathcal{C}$ is the set of colors and $\alpha(H(\sigma, L))$ is the independence number of the subgraph of $H$… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?