The Fibonacci Zeta functions are defined by F .s/ D P 1 kD1 F s k . Several aspects of the function have been studied. In this article we generalize the results by Ohtsuka and Nakamura, who treated the partial infinite sum P 1 kDn F s k for all positive integers n.
In the context of list-coloring the vertices of a graph, Hall's condition is a generalization of Hall's Marriage Theorem and is necessary (but not sufficient) for a graph to admit a proper list-coloring. The graph $G$ with list assignment $L$ satisfies Hall's condition if for each subgraph $H$ of $G$, the inequality $|V(H)| \leq \sum_{\sigma \in \mathcal{C}} \alpha(H(\sigma, L))$ is satisfied, where $\mathcal{C}$ is the set of colors and $\alpha(H(\sigma, L))$ is the independence number of the subgraph of $H$ induced on the set of vertices having color $\sigma$ in their lists. A list assignment $L$ to a graph $G$ is called Hall if $(G,L)$ satisfies Hall's condition. A graph $G$ is Hall $m$-completable for some $m \geq \chi(G)$ if every partial proper $m$-coloring of $G$ whose corresponding list assignment is Hall can be extended to a proper coloring of $G$. In 2011, Bobga et al. posed the following questions: (1) Are there examples of graphs that are Hall $m$-completable, but not Hall $(m+1)$-completable for some $m \geq 3$? (2) If $G$ is neither complete nor an odd cycle, is $G$ Hall $\Delta(G)$-completable? This paper establishes that for every $m \geq 3$, there exists a graph that is Hall $m$-completable but not Hall $(m+1)$-completable and also that every bipartite planar graph $G$ is Hall $\Delta(G)$-completable.
In the context of list coloring the vertices of a graph, Hall's condition is a generalization of Hall's Marriage Theorem and is necessary (but not sufficient) for a graph to admit a proper list coloring. The graph $G$ with list assignment $L$, abbreviated $(G,L)$, satisfies Hall's condition if for each subgraph $H$ of $G$, the inequality $|V(H)| \leq \sum_{\sigma \in \mathcal{C}} \alpha(H(\sigma, L))$ is satisfied, where $\mathcal{C}$ is the set of colors and $\alpha(H(\sigma, L))$ is the independence number of the subgraph of $H$ induced on the set of vertices having color $\sigma$ in their lists. A list assignment $L$ to a graph $G$ is called Hall if $(G,L)$ satisfies Hall's condition. A graph $G$ is Hall $k$-extendible for some $k \geq \chi(G)$ if every $k$-precoloring of $G$ whose corresponding list assignment is Hall can be extended to a proper $k$-coloring of $G$. In 2011, Bobga et al. posed the question: If $G$ is neither complete nor an odd cycle, is $G$ Hall $\Delta(G)$-extendible? This paper establishes an affirmative answer to this question: every graph $G$ is Hall $\Delta(G)$-extendible. Results relating to the behavior of Hall extendibility under subgraph containment are also given. Finally, for certain graph families, the complete spectrum of values of $k$ for which they are Hall $k$-extendible is presented. We include a focus on graphs which are Hall $k$-extendible for all $k \geq \chi(G)$, since these are graphs for which satisfying the obviously necessary Hall's condition is also sufficient for a precoloring to be extendible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.