We consider the problem of finding a (non-negative) measure μ on B(Cn) such that ∫Cnzkdμ(z)=sk, ∀k∈K. Here, K is an arbitrary finite subset of Z+n, which contains (0,…,0), and sk are prescribed complex numbers (we use the usual notations for multi-indices). There are two possible interpretations of this problem. Firstly, one may consider this problem as an extension of the truncated multidimensional moment problem on Rn, where the support of the measure μ is allowed to lie in Cn. Secondly, the moment problem is a particular case of the truncated moment problem in Cn, with special truncations. We give simple conditions for the solvability of the above moment problem. As a corollary, we have an integral representation with a non-negative measure for linear functionals on some linear subspaces of polynomials.