material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abstract. In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The fact that the correct notion of spectrum for quaternionic operators was not previously known has been one of the main obstructions to fully understanding the spectral theorem in this setting. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.
Abstract. The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem.In this paper we prove the quaternionic spectral theorem for unitary operators using the S-spectrum. In the case of quaternionic matrices, the S-spectrum coincides with the right-spectrum and so our result recovers the well known theorem for matrices. The notion of S-spectrum is relatively new, see [17], and has been used for quaternionic linear operators, as well as for n-tuples of not necessarily commuting operators, to define and study a noncommutative versions of the Riesz-Dunford functional calculus. The main tools to prove the spectral theorem for unitary operators are the quaternionic version of Herglotz's theorem, which relies on the new notion of q-positive measure, and quaternionic spectral measures, which are related to the quaternionic Riesz projectors defined by means of the S-resolvent operator and the S-spectrum. The results in this paper restore the analogy with the complex case in which the classical notion of spectrum appears in the Riesz-Dunford functional calculus as well as in the spectral theorem.
The truncated matrix-valued K-moment problem on R d , C d , and T d will be considered. The truncated matrix-valued K-moment problem on R d requires necessary and sufficient conditions for a multisequence of Hermitian matrices {S γ } γ∈Γ (where Γ is a finite subset of N d 0) to be the corresponding moments of a positive Hermitian matrix-valued Borel measure σ, and also the support of σ must be contained in some given non-empty set K ⊆ R d , i.e., (0.1) S γ = R d ξ γ dσ(ξ), for all γ ∈ Γ, and (0.2) supp σ ⊆ K. Given a non-empty set K ⊆ R d and a finite multisequence, indexed by a certain family of finite subsets of N d 0 , of Hermitian matrices we obtain necessary and sufficient conditions for the existence of a minimal finitely atomic measure which satisfies (0.1) and (0.2). In particular, our result can handle the case when Γ = {γ ∈ N d 0 : 0 ≤ |γ| ≤ 2n + 1}. We will also discuss a similar result in the multivariable complex and polytorus setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.