Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding −20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9 mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties, and absorptivity.