The broken and unbroken phases of
P
T
and supersymmetry in optical systems are explored for a complex refractive index profile in the form of a Scarf potential, under the framework of supersymmetric quantum mechanics. The transition from unbroken to the broken phases of
P
T
-symmetry, with the merger of eigenfunctions near the exceptional point is found to arise from two distinct realizations of the potential, originating from the underlying supersymmetry. Interestingly, in
P
T
-symmetric phase, spontaneous breaking of supersymmetry occurs in a parametric domain, possessing non-trivial shape invariances, under reparametrization to yield the corresponding energy spectra. One also observes a parametric bifurcation behaviour in this domain. Unlike the real Scraf potential, in
P
T
-symmetric phase, a connection between complex isospecrtal superpotentials and modified Korteweg-de Vries equation occurs, only with certain restrictive parametric conditions. In the broken
P
T
-symmetry phase, supersymmetry is found to be intact in the entire parameter domain yielding the complex energy spectra, with zero-width resonance occurring at integral values of a potential parameter.