Transition metal complexes of various acetylacetone-based ligands of the type ML (where M= Cu(II), Ni(II), Co(II); L= 3-(aryl)-pentane-2,4-dione) have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, H1NMR, mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are nonelectrolytic in nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry for copper(II), cobalt(II), and nickel(II) complexes of 3-(3-phenylallylidene)pentane-2,4-dione and octahedral geometry for other metal(II) complexes. The redox behaviors of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria and fungus. The metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands was found to have considerable effect compared to that of urea and KDP.