Abstract:The Ordos Plateau, a typical semi-arid area in northern China, has experienced severe wind erosion events that have stripped the agriculturally important finer fraction of the topsoil and caused dust events that often impact the air quality in northern China and the surrounding regions. Both climate change and human activities have been considered key factors in the desertification process. This study used multi-spectral Landsat Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) remote sensing data collected in 2000, 2006, 2010 and 2015 to generate a temporal series of the modified soil-adjusted vegetation index (MSAVI), bare soil index (BSI) and albedo products in the Ordos Plateau. Based on these satellite products and the decision tree method, we quantitatively assessed the desertification status over the past 15 years since 2000. Furthermore, a quantitative method was used to assess the roles of driving forces in desertification dynamics using net primary productivity (NPP) as a commensurable indicator. The results showed that the area of non-desertification land increased from 6647 km 2 in 2000 to 15,961 km 2 in 2015, while the area of severe desertification land decreased from 16,161 km 2 in 2000 to 8,331 km 2 in 2015. During the period 2006-2015, the effect of human activities, especially the ecological recovery projects implemented in northern China, was the main cause of desertification reversion in this region. Therefore, ecological recovery projects are still required to promote harmonious development between nature and human society in ecologically fragile regions like the Ordos Plateau.