Three AtHSP90 isoforms, cytosol-localized AtHSP90.2, chloroplast-localized AtHSP90.5, and endoplasmic reticulum (ER)-localized AtHSP90.7 genes, were constitutively overexpressed in Arabidopsis thaliana to study their functional mechanisms under oxidative stress. Overexpression of AtHSP90 genes reduced germination of transgenic seeds under oxidative stress. When exposed to 10 mM H 2 O 2 , AtHSP90 transgenic seedlings displayed lower activities of superoxide dismutase, catalase, and peroxidase; higher content of malondialdehyde; and higher levels of protein damage than detected in the wild type. This indicated that overexpression of AtHSP90.2, AtHSP90.5, and AtHSP90.7 in Arabidopsis impaired plant tolerance to oxidative stress. Moreover, overexpression of chloroplast-and ER-localized AtHSP90 resulted in lower resistance to oxidative stress than that of cytosolic AtHSP90. This suggested that HSP90.2, HSP90.5, and HSP90.7 localized in different cellular compartments were involved in different functional mechanisms during oxidative stress.