It is well known that the reserves/redundancies built into the transmission grid in order to address a variety of contingencies over a long planning horizon may, in the short run, cause economic dispatch inefficiency. Accordingly, power grid optimization by means of short term line switching has been proposed and is typically formulated as a mixed integer programming problem by treating the state of the transmission lines as a binary decision variable, i.e. in-service or out-of-service, in the optimal power flow problem. To handle the combinatorial explosion, a number of heuristic approaches to grid topology reconfiguration have been proposed in the literature. This paper extends our recent results on the iterative heuristics and proposes a fast grid decomposition algorithm based on vertex cut sets with the purpose of further reducing the computational cost. The paper concludes with a discussion of the possible relationship between vertex cut sets in transmission networks and power trading.