Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordinates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid Finite Element Spectral Green's Function method (FEM-SGF), originally developed to solve eigenvalue diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formulation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous approximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of our methodology. ELD-SN method is free from spatial truncation errors in S2 quadrature, and generate good results in the other quadrature sets. This method is more accurate than the conventional Diamond Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green's Function (SGF) method, for quadrature order greater than two.