Abstract. Communicating Finite States Machines (CFMs) and Message Sequence Graphs (MSC-graphs for short) are two popular specification formalisms for communicating systems. MSC-graphs capture requirements (scenarios), hence they are the starting point of the design process. Implementing an MSC-graph means obtaining an equivalent deadlock-free CFM, since CFMs correspond to distributed messagepassing algorithms. Several partial answers for the implementation have been proposed. E.g., local-choice MSC-graphs form a subclass of deadlockfree CFM: Testing equivalence with some local-choice MSC-graph is thus a partial answer to the implementation problem. Using Compositional MSCs, we propose a new algorithm which captures more implementable models than with MSCs. Furthermore, the size of the implementation is reduced by one exponential.