Message sequence charts (MSCs) are an attractive visual formalism widely used to capture system requirements during the early design stages in domains such as telecommunication software. It is fruitful to have mechanisms for specifying and reasoning about collections of MSCs so that errors can be detected even at the requirements level. We propose, accordingly, a notion of regularity for collections of MSCs and explore its basic properties. In particular, we provide an automata-theoretic characterization of regular MSC languages in terms of finite-state distributed automata called bounded message-passing automata. These automata consist of a set of sequential processes that communicate with each other by sending and receiving messages over bounded FIFO channels. We also provide a logical characterization in terms of a natural monadic secondorder logic interpreted over MSCs. A commonly used technique to generate a collection of MSCs is to use a hierarchical message sequence chart (HMSC). We show that the class of languages arising from the so-called bounded HMSCs constitute a proper subclass of the class of regular MSC languages. In fact, we characterize the bounded HMSC languages as the subclass of regular MSC languages that are finitely generated.
Labelled transition systems are a simple yet powerful formalism for describing the operational behaviour of computing systems. They can be extended to model concurrency faithfully by permitting transitions between states to be labelled by a collection of actions, denoting a concurrent step. Petri nets (or Place/Transition nets) give rise to such step transition systems in a natural way—the marking diagram of a Petri net is the canonical transition system associated with it. In this paper, we characterize the class of PN-transition systems, which are precisely those step transition systems generated by Petri nets. We express the correspondence between PN-transition systems and Petri nets in terms of an adjunction between a category of PN-transition systems and a category of Petri nets in which the associated morphisms are behaviour-preserving in a strong and natural sense.
We tackle a natural problem from distributed computing, involving time-stamps. Let P"+ p , p , 2 , p , , be a set of computing agents or processes which synchronize with each other from time to time and exchange information about themselves and others. The gossip problem is the following: Whenever a set P-P meets, the processes in P must decide amongst themselves which of them has the latest information, direct or indirect, about each agent p in the system. We propose an algorithm to solve this problem which is finite-state and local. Formally, this means that our algorithm can be implemented as an asynchronous automaton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.