Nanowires (NWs) with a unique one-dimensional structure can monolithically integrate highquality III-V semiconductors onto Si platform, which is highly promising to build lasers for Si photonics. However, the lasing from vertically-standing NWs on silicon is much more difficult to achieve compared with NWs broken off from substrates, causing significant challenges in the integration. Here, the challenge of achieving vertically-standing NW lasers is systematically analysed with III-V materials, e.g. GaAs(P) and InAs(P). The poor optical reflectivity at the NW/Si interface results severe optical field leakage to the substrate, and the commonly used SiO 2 or Si 2 N 3 dielectric mask at the interface can only improve it to ~10%, which is the major obstacle for achieving low-threshold lasing. A NW super lattice distributed Bragg reflector is therefore proposed, which is able to greatly improve the reflectivity to >97%. This study provides a highly-feasible method to greatly improve the performance of vertically-standing NW lasers, which can boost the rapid development of Si photonics.