Luminescent Solar Concentrators (LSCs) have drawn huge interest recently as a technology to pave the way towards the seamless integration of photovoltaics to a range of high-value industries; from architecture and sports to leisure and consumer electronics. Additional device flexibility comes with the inherent ability to attain freeform shapes, expanding the possible fabrication methods, applications and retro-fitting techniques. Unfortunately, flexible LSCs suffer from curvature induced losses which can severely reduce their efficiency, inhibiting the potential of large-scale devices. In this work, we experimentally demonstrate an all-silicone based flexible LSC and Distributed Bragg Reflector (DBR) combination diminishing curvature induced losses. The DBRs, fabricated using scalable solution-based processes, exhibit optical properties precisely engineered to partner our LSCs, as well as high uniformity, resistance to temperature and curvature. Comprehensive modelling shows that for large-scale devices (1m 2) we can essentially decouple the performance of the LSC from curvature, steering the technology towards commercial viability.