Carbon nanotubes are shown to be beneficial additives to perovskite solar cells, and the inclusion of such nanomaterials will continue to play a crucial role in the push toward developing efficient and stable device architectures. Herein, titanium dioxide/carbon nanotube composite perovskite solar cells are fabricated, and device performance parameters are correlated with spectroscopic signatures of the materials to understand the origin of performance enhancement. By probing the charge carrier dynamics with photoluminescence and femtosecond transient absorption spectroscopy, the results indicate that charge transfer is not improved by the presence of the carbon nanotubes. Instead, carbon nanotubes are shown to passivate the electronic defect states within the titanium dioxide, which can lead to stronger radiative recombination in the titanium dioxide/carbon nanotube films. The defect passivation allows the perovskite solar cells made using an optimized titanium dioxide/carbon nanotube composite to achieve a peak power conversion efficiency of 20.4% (19% stabilized), which is one of the highest values reported for perovskite solar cells not incorporating a mixed cation light absorbing layer. The results discuss new fundamental understandings for the role of carbon nanomaterials in perovskite solar cells and present a significant step forward in advancing the field of high‐performance photovoltaics.
Surface-enhanced Raman spectroscopy (SERS) has been widely utilised as a sensitive analytical technique for the detection of trace levels of organic molecules. The detection of organic compounds in the gas phase is particularly challenging due to the low concentration of adsorbed molecules on the surface of the SERS substrate. This is particularly the case for explosive materials, which typically have very low vapour pressures, limiting the use of SERS for their identification. In this work, silver nanocubes (AgNCs) were developed as a highly sensitive SERS substrate with very low limit-of-detection (LOD) for explosive materials down to the femtomolar (10 M) range. Unlike typical gold-based nanostructures, the AgNCs were found suitable for the detection of both aromatic and aliphatic explosives, enabling detection with high specificity at low concentration. SERS studies were first carried out using a model analyte, Rhodamine-6G (Rh-6G), as a probe molecule. The SERS enhancement factor was estimated as 8.71 × 10 in this case. Further studies involved femtomolar concentrations of 2,4-dinitrotoluene (DNT) and nanomolar concentrations of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), as well as vapour phase detection of DNT.
We report the fast amplitude modulation of a quantum cascade laser emitting in single-mode operation in the terahertz frequency range by employing compact, integrated devices based on the interplay between plasmonic antenna arrays and monolayer graphene. By acting on the carrier concentration of graphene, the optical response of these plasmonic resonances was modified. The modulator’s characteristics have been studied by using both time domain spectroscopic laser systems, yielding the broad frequency response of these resonant arrays, and quantum cascade lasers, providing us with a narrow and stable laser source, a mandatory prerequisite for the determination of the modulation speed of these devices. The measured modulation speed exhibits a cutoff frequency of 5.5 MHz ± 1.1 MHz. These results represent the first step toward the realization of fast integrated circuitry for communications in the terahertz frequency range.
Luminescent Solar Concentrators (LSCs) have drawn huge interest recently as a technology to pave the way towards the seamless integration of photovoltaics to a range of high-value industries; from architecture and sports to leisure and consumer electronics. Additional device flexibility comes with the inherent ability to attain freeform shapes, expanding the possible fabrication methods, applications and retro-fitting techniques. Unfortunately, flexible LSCs suffer from curvature induced losses which can severely reduce their efficiency, inhibiting the potential of large-scale devices. In this work, we experimentally demonstrate an all-silicone based flexible LSC and Distributed Bragg Reflector (DBR) combination diminishing curvature induced losses. The DBRs, fabricated using scalable solution-based processes, exhibit optical properties precisely engineered to partner our LSCs, as well as high uniformity, resistance to temperature and curvature. Comprehensive modelling shows that for large-scale devices (1m 2) we can essentially decouple the performance of the LSC from curvature, steering the technology towards commercial viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.