Tin perovskites have emerged as promising alternatives to toxic lead perovskites in next-generation photovoltaics, but their poor environmental stability remains an obstacle towards more competitive performances. Therefore, a full understanding of their decomposition processes is needed to address these stability issues. Herein, we elucidate the degradation mechanism of 2D/3D tin perovskite films based on (PEA)0.2(FA)0.8SnI3 (where PEA is phenylethylammonium and FA is formamidinium). We show that SnI4, a product of the oxygen-induced degradation of tin perovskite, quickly evolves into iodine via the combined action of moisture and oxygen. We identify iodine as a highly aggressive species that can further oxidise the perovskite to more SnI4, establishing a cyclic degradation mechanism. Perovskite stability is then observed to strongly depend on the hole transport layer chosen as the substrate, which is exploited to tackle film degradation. These key insights will enable the future design and optimisation of stable tin-based perovskite optoelectronics.
Organic semiconductors have become essential parts of thin-film electronic devices, particularly as hole transport layers in perovskite solar cells where they represent one of the major bottlenecks to further enhancements in stability and efficiency.
Surface area determination with the Brunauer–Emmett–Teller (BET) method is a widely used characterization technique for metal–organic frameworks (MOFs). Since these materials are highly porous, the use of the BET theory can be problematic. Several researchers have evaluated the BET method to gain insights into the usefulness of the obtained results and interestingly, their findings are not always consistent. In this review, the suitability of the BET method is discussed for MOFs that have a diverse range of pore widths below the diameters of N2 or Ar and above 20 Å. In addition, the surface area of MOFs that are obtained by implementing different approaches, such as grand canonical Monte Carlo simulations, calculations from the crystal structures or based on experimental N2, Ar, or CO2 adsorption isotherms, are compared and evaluated. Inconsistencies in the state‐of‐the‐art are also noted. Based on the current literature, an overview is provided of how the BET method can give useful estimations of the surface areas for the majority of MOFs, but there are some crucial and specific exceptions which are highlighted in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.