Pulmonary spindle cell carcinoma (PSCC) is a rare and aggressive non‐small cell lung cancer (NSCLC) subtype with a dismal prognosis. The molecular characteristics of PSCC are largely unknown due to its rarity, which limits the diagnosis and treatment of this historically poorly characterized malignancy. We present comprehensive genomic profiling results of baseline tumor samples from 22 patients histologically diagnosed with PSCC, representing the largest cohort to date. Somatic genetic variant detection was compared between paired plasma samples and primary tumors from 13 patients within our cohort. The associations among genomic features, treatment, and prognosis were also analyzed in representative patient cases. TP53 (54.5%), TERT (36.4%), CDKN2A (27.3%), and MET (22.7%) were most frequently mutated. Notably, 81.8% of patients had actionable targets in their baseline tumors, including MET (22.7%), ERBB2 (13.6%), EGFR (9.1%), KRAS (9.1%), ALK (9.1%), and ROS1 (4.5%). The median tumor mutation burden (TMB) for PSCC tumors was 5.5 mutations per megabase (muts/Mb). TMB‐high tumors (>10 muts/Mb) exhibited a significantly higher mutation frequency in genes such as KRAS, ARID2, FOXL2, and LRP1B, as well as within the DNA mismatch repair pathway. The detection rates for single nucleotide variants and structural variants were comparable between matched tumor and plasma samples, with 48.6% of genetic variants being mutually identified in both sample types. Additionally, a patient with a high mutation load and positive PD‐L1 expression demonstrated a 7‐month survival benefit from chemoimmunotherapy. Furthermore, a patient with an ALK‐rearranged tumor achieved a remarkable 3‐year progression‐free survival following crizotinib treatment. Overall, our findings deepen the understanding of the complex genomic landscape of PSCC, revealing actionable targets amenable to tailored treatment of this poorly characterized malignancy.