Spermatozoa released from the testis are unable to fertilize an egg without a coordinated process of maturation in the lumen of the epididymis. Relatively little is known about the molecular events that integrate this critical progression along the male genital ducts in man. Here, we use single cell RNA-sequencing to construct an atlas of the human proximal epididymis. We find that the CFTR, which is pivotal in normal epididymis fluid transport, is most abundant in surface epithelial cells in the efferent ducts and in rare clear cells in the caput epididymis, suggesting region-specific functional properties. We reveal transcriptional signatures for multiple cell clusters, which identify the individual roles of principal, apical, narrow, basal, clear, halo, and stromal cells in the epididymis. A marked cell type–specific distribution of function is seen along the duct with local specialization of individual cell types integrating processes of sperm maturation.