The adsorption of hydrogen gas into single-walled carbon nanotubes (SWNTs) and idealized carbon slit pores is studied by computer simulation. Hydrogen-hydrogen interactions are modeled with the Silvera-Goldman potential. The Crowell-Brown potential is used to model the hydrogen-carbon interactions. Calculations include adsorption inside the tubes, in the interstitial regions of tube arrays, and on the outside surface of isolated tubes. Quantum effects are included through implementation of the path integral formalism. Comparison with classical simulations gives an indication of the importance of quantum effects for hydrogen adsorption. Quantum effects are important even at 298 K for adsorption in tube interstices. We compare our simulations with experimental data for SWNTs, graphitic nanofibers, and activated carbon. Adsorption isotherms from simulations are in reasonable agreement with experimental data for activated carbon, but do not confirm the large uptake reported for SWNTs and nanofibers. Although the adsorption potential for hydrogen in SWNTs is enhanced relative to slit pores of the same size, our calculations show that the storage capacity of an array of tubes is less than that for idealized slit pore geometries, except at very low pressures. Ambient temperature isotherms indicate that an array of nanotubes is not a suitable sorbent material for achieving DOE targets for vehicular hydrogen storage.
Stretchable and multifunctional sensors can be applied in multifunctional sensing devices, safety forewarning equipment, and multiparametric sensing platforms. However, a stretchable and multifunctional sensor was hard to fabricate until now. Herein, a scalable and efficient fabrication strategy is adopted to yield a sensor consisting of ZnO nanowires and polyurethane fibers. The device integrates high stretchability (tolerable strain up to 150%) with three different sensing capabilities, i.e., strain, temperature, and UV. Typically achieved specifications for strain detection are a fast response time of 38 ms, a gauge factor of 15.2, and a high stability of >10 000 cyclic loading tests. Temperature is detected with a high temperature sensitivity of 39.3% °C−1, while UV monitoring features a large ON/OFF ratio of 158.2. With its fiber geometry, mechanical flexibility, and high stretchability, the sensor holds tremendous prospect for multiparametric sensing platforms, including wearable devices.
Most KHEs appeared before 12 months of age. KHEs are associated with various major complications, which can occur in combination and develop early in the disease process. Young age, large lesion size and mixed lesion type are important predictors of KMP.
Adsorption of hydrogen on graphitic nanofibers has been computed from Grand Canonical Monte Carlo
simulations. The graphite platelet spacing has been optimized to maximize the weight fraction of hydrogen
adsorbed. Comparison of experimental data of Rodriguez and co-workers (Chambers, A; Park, C.; Baker, R.
T. K.; Rodriguez, N. M. J.
Phys.
Chem.
B
1998, 102, 4253) with adsorption isotherms from simulations
indicate that the phenomenal uptake observed from experiments cannot be explained in terms of reasonable
solid−fluid potentials. We have varied the strength and range of the solid−fluid potential in order to reproduce
the experimental excess adsorption. If the form of the potential is held constant, the potential well depth must
be increased by a factor of about 150 in order to reach the experimental data. If the range of the attractive
well is allowed to increase from r
-6 to r
-4, the potential well depth must be increased by about a factor of
30 to match experimental data. Given the magnitude of the well depths, we conclude that no physically
realistic graphite−hydrogen potential can account for the adsorption reported by Rodriguez et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.