Background. Triple-negative breast cancer (TNBC) is a major subtype of breast cancer. Due to the lack of effective therapeutic targets, the prognosis is poor. In order to find an effective target, despite many efforts, the molecular mechanisms of TNBC are still not well understood which remain to be a profound clinical challenge.Methods. To identify the candidate genes in the carcinogenesis and progression of TNBC, microarray datasets GSE36693 and GSE65216 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and functional and pathway enrichment analyses were performed using the Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) databases via DAVID. We constructed the protein-protein interaction network (PPI) and the performed the module analysis using STRING and Cytoscape. Then we reanalyzed the selected DEGs genes and the survival analysis was performed using cBioportal.Results. A total of 140 DEGs were identified, consisting of 69 upregulated genes and 71 downregulated genes. Three hub genes were up-regulated among the selected genes from PPI and biological process analysis uncovered the fact that these genes were mainly enriched in p53 pathway and the pathways in cancer. Survival analysis showed that only CCNE1 may be involved in the carcinogenesis, invasion or recurrence of TNBC. Conclusion. CCNE1 could confer a poorer prognostic in TNBC identified by bioinformatic analysis and play key roles in the progression of TNBC which may contribute potential targets for the diagnosis, treatment and prognosis assessment of TNBC.