Primary bone tumor resections often result in critical size defects, which then necessitate challenging clinical management approaches to reconstruct. One such intervention is the Masquelet technique, in which poly(methyl methacrylate) (PMMA) bone cement is placed as a spacer temporarily while adjuvant chemotherapeutics are administered systemically. The spacer is later removed and replaced with bone autograft. Local recurrence remains an important and devastating problem, therefore, a system capable of locally delivering chemotherapeutics will present unique advantages. In this work, a refillable chemotherapeutic (doxorubicin, DOX) delivery platform comprised of PMMA bone cement and insoluble 𝜸-cyclodextrin (𝜸-CD) polymeric microparticles is developed and explored towards application as a temporary adjuvant chemotherapeutic spacer. The system is characterized for porosity, mechanical strength, DOX filling and refilling capacity, elution kinetics, and cytotoxicity. Since residual chemotherapeutics can adversely impact bone healing, it is important that virtually all DOX be released from material. Composites containing 15 wt% 𝜸-CD microparticles demonstrate 100% DOX release within 100 days, whereas only 6% DOX is liberated from PMMA with free DOX over same period. Refillable properties of PMMA composite system may find utility for customizing dosing regimens. Findings suggest that PMMA composites can have potential as chemotherapeutic delivery platforms to assist in bone reconstruction.