Introducing the Minimum Spanning Tree (MST) algorithms to neural networks science eliminated the problem of arbitrary setting of the threshold for connectivity strength. Despite these advantages, MST has been rarely used to study network abnormalities in schizophrenia. An MST graph mapping a network structure is its simplification, therefore, it is important to verify whether the reconfigured network is significantly related to the behavioural dimensions of the clinical picture of schizophrenia. 35 first-episode schizophrenia patients and 35 matched healthy controls underwent an assessment of information processing speed, cognitive inter-trial variability modelled with ex-Gaussian distributional analysis of reaction times and resting-state EEG recordings to obtain frequency-specific functional connectivity matrices from which MST graphs were computed. The patients’ network had a more random structure and star-like arrangement with overloaded hubs positioned more posteriorly than it was in the case of the control group. Deficient processing speed in the group of patients was predicted by increased maximal betweenness centrality in beta and gamma bands, while decreased consistency in cognitive processing was predicted by the betweenness centrality of posterior nodes in the gamma band, together with duration of illness. The betweenness centrality of posterior nodes in the gamma band was also significantly correlated with positive psychotic symptoms in the clinical group.
Purpose: This study evaluated the diagnostic accuracy of physical examination and magnetic resonance imaging (MRI) in knee injuries. Methods: Ninety-six patients at a regional hospital were included in the study. Each participant underwent a physical examination in which menisci and ACL were evaluated. Knee joint MRI was collected from each patient. Physical examination and MRI scans were then compared with knee arthroscopy findings as a golden standard for meniscal and ligamentous lesions. The data were analyzed and specificity and sensitivity were calculated and correlated on receiver operating characteristics (ROC) curves. Results: Knee arthroscopy diagnosed 32 total ACL ruptures, 45 medial meniscus and 17 lateral meniscus lesions. Three patients were diagnosed with bilateral meniscal lesions. The highest sensitivities were the McMurray test (87.5%) for medial meniscus (MM) and the Thessaly test (70%) for lateral meniscus (LM). The most sensitive ACL test was Lachman (84.5%), whereas, the pivot shift and Lelli tests were the most specific (98.5%). MRI was highly sensitive for MM (96%) with specificity of 52%. MRI showed lower sensitivity (70%) and higher specificity (85.5%) for LM. The specificity of MRI for ACL rupture was 92%, with sensitivity only 75%. Conclusion: McMurray and Apley tests for meniscal lesions seem the most appropriate in daily practice. A combination of lever signs, pivot shifts (PSs) and Lachman tests showed the best sensitivity and specificity in detecting ACL deficiency, and was superior to MRI.
An objective of this study was to investigate the group effect in rock cone failure occurring in pull-out with the use of 3D finite element analysis. At present, undercut anchors are typically applied as structural fasteners of steel elements in concrete buildings; however, new areas for their use are being explored. The reported study set out to evaluate the use of undercut anchors in special-purpose rock mining, e.g., in mining rescue operations. In such emergencies, mechanical mining may prove impossible, whereas the use of explosives is even prohibited. Although manual methods could be considered, their effectiveness is hard to assess. Prior to considering the use of undercut anchors in mining, several aspects must essentially be determined: The mechanics of cone failure, including the extent of surface failure and the values of the pull-out force of the anchor for a given rock mass relative to the anchor system, the embedment depth, or the rock strength parameters. These factors may be investigated successfully using finite element analysis, the results of which are presented in the study.
This paper presents the results of a numerical FEM (Finite Element Method) simulation of the formation of a rock failure zone in its initial stage of development. The influence of rock parameters, such as the Young’s modulus, Poisson’s ratio and friction factor of the rock in the contact zone with the working surface of the undercut anchor head, were taken into account. The obtained results of FEM simulations were compared with the results of field tests conducted in Polish mining plants extracting rock raw materials.
This study employs the numerical analysis and experimental testing to analyze the fracturing mechanics and the size of rock cones formed in the pull-out of a system of three undercut anchors. The research sets out to broaden the knowledge regarding: (a) the potential of the undercut anchor pull-out process in mining of the rock mass, and (b) estimating the load-carrying capacity of anchors embedded in the rock mass (which is distinctly different from the anchorage to concrete). Undercut anchors are most commonly applied as fasteners of steel components in concrete structures. The new application for undercut anchors postulated in this paper is their use in rock mining in exceptional conditions, such as during mining rescue operations, which for safety considerations may exclude mechanical mining techniques, mining machines, or explosives. The remaining solution is manual rock fracture, whose effectiveness is hard to assess. The key issue in the analyzed aspect is the rock fracture mechanics, which requires in-depth consideration that could provide the assistance in predicting the breakout prism dimensions and the load-displacement behavior of specific anchorage systems, embedment depth, and rock strength parameters. The volume of rock breakout prisms is an interesting factor to study as it is critical to energy consumption and, ultimately, the efficiency of the process. Our investigations are supported by the FEM (Finite Element Method) analysis, and the developed models have been validated by the results from experimental testing performed in a sandstone mine. The findings presented here illuminate the discrepancies between the current technology, test results, and standards that favor anchorage to concrete, particularly in the light of a distinct lack of scientific and industry documentation describing the anchorage systems’ interaction with rock materials, which exhibit high heterogeneity of the internal structure or bedding. The Concrete Capacity Design (CCD) method approximates that the maximum projected radius of the breakout cone on the free surface of concrete corresponds to the length of at the most three embedment depths (hef). In rock, the dimensions of the breakout prism are found to exceed the CCD recommendations by 20–33%. The numerical computations have demonstrated that, for the nominal breakout prism angle of approx. 35% (CCD), the critical spacing for which the anchor group effect occurs is ~4.5 (a cross-section through two anchor axes). On average, the observed spacing values were in the range of 3.6–4.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.