Trace elements play a crucial role in many biochemical processes, mainly as components of vitamins and enzymes. Although small amounts of metal ions have protective properties, excess metal levels result in oxidative injury, which is why metal ion homeostasis is crucial for the proper functioning of the brain. The changes of their level in the brain have been proven to be a risk factor for Alzheimer's, Parkinson's, and Huntington's diseases, as well as amyotrophic lateral sclerosis. Therefore, it is currently an important application of various analytical methods. This review covers the most important of them: inductively coupled ground mass spectrometry (ICP-MS), flame-induced atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (GFAAS), optical emission spectrometry with excitation in inductively coupled plasma (ICP-OES), X-ray fluorescence spectrometry (XRF), and neutron activation analysis (NAA). Additionally, we present a summary of concentration values found by different research groups.
Introducing the Minimum Spanning Tree (MST) algorithms to neural networks science eliminated the problem of arbitrary setting of the threshold for connectivity strength. Despite these advantages, MST has been rarely used to study network abnormalities in schizophrenia. An MST graph mapping a network structure is its simplification, therefore, it is important to verify whether the reconfigured network is significantly related to the behavioural dimensions of the clinical picture of schizophrenia. 35 first-episode schizophrenia patients and 35 matched healthy controls underwent an assessment of information processing speed, cognitive inter-trial variability modelled with ex-Gaussian distributional analysis of reaction times and resting-state EEG recordings to obtain frequency-specific functional connectivity matrices from which MST graphs were computed. The patients’ network had a more random structure and star-like arrangement with overloaded hubs positioned more posteriorly than it was in the case of the control group. Deficient processing speed in the group of patients was predicted by increased maximal betweenness centrality in beta and gamma bands, while decreased consistency in cognitive processing was predicted by the betweenness centrality of posterior nodes in the gamma band, together with duration of illness. The betweenness centrality of posterior nodes in the gamma band was also significantly correlated with positive psychotic symptoms in the clinical group.
This study employs the numerical analysis and experimental testing to analyze the fracturing mechanics and the size of rock cones formed in the pull-out of a system of three undercut anchors. The research sets out to broaden the knowledge regarding: (a) the potential of the undercut anchor pull-out process in mining of the rock mass, and (b) estimating the load-carrying capacity of anchors embedded in the rock mass (which is distinctly different from the anchorage to concrete). Undercut anchors are most commonly applied as fasteners of steel components in concrete structures. The new application for undercut anchors postulated in this paper is their use in rock mining in exceptional conditions, such as during mining rescue operations, which for safety considerations may exclude mechanical mining techniques, mining machines, or explosives. The remaining solution is manual rock fracture, whose effectiveness is hard to assess. The key issue in the analyzed aspect is the rock fracture mechanics, which requires in-depth consideration that could provide the assistance in predicting the breakout prism dimensions and the load-displacement behavior of specific anchorage systems, embedment depth, and rock strength parameters. The volume of rock breakout prisms is an interesting factor to study as it is critical to energy consumption and, ultimately, the efficiency of the process. Our investigations are supported by the FEM (Finite Element Method) analysis, and the developed models have been validated by the results from experimental testing performed in a sandstone mine. The findings presented here illuminate the discrepancies between the current technology, test results, and standards that favor anchorage to concrete, particularly in the light of a distinct lack of scientific and industry documentation describing the anchorage systems’ interaction with rock materials, which exhibit high heterogeneity of the internal structure or bedding. The Concrete Capacity Design (CCD) method approximates that the maximum projected radius of the breakout cone on the free surface of concrete corresponds to the length of at the most three embedment depths (hef). In rock, the dimensions of the breakout prism are found to exceed the CCD recommendations by 20–33%. The numerical computations have demonstrated that, for the nominal breakout prism angle of approx. 35% (CCD), the critical spacing for which the anchor group effect occurs is ~4.5 (a cross-section through two anchor axes). On average, the observed spacing values were in the range of 3.6–4.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.