Generating serial components via additive manufacturing (AM) a deep understanding of process-related characteristics is necessary. The extrusion-based AM called fused layer manufacturing (FLM), also known as fused deposition modeling (FDM™) or fused filament fabrication (FFF) is an AM process for producing serial components. Improving mechanical properties of AM parts is done by adding fibers in the raw material to reinforce the polymer. The study aims to create a more detailed comprehension of FLM and process-related characteristics with their influence on the composite.Thereby, a short carbon fiber-reinforced polyamide (CarbonX™ Nylon, 3DXTECH, USA) with 12.5 wt.‑% fiber content, 7 μm fiber diameter, and 150 to 400 µm fiber length distribution was investigated. To separate process-related characteristics of FLM, reference specimens were fabricated via injection molding (IM) with single-batch material. For the mechanical characterization, quasi-static tensile tests were carried out in accordance to DIN 527‑2. Quality assessment including void content and void distribution was performed via micro-computed tomography (CT).The mechanical characterization clarifies effects on mechanical properties depending on process-related characteristics of FLM. CT scans show higher void contents of FLM specimens compared to IM specimens and void orientation dependent on printing direction. FLM shows process-related characteristics which generally strengthen mechanical properties of polymers. Nevertheless, tensile strength of FLM specimens decrease by more than 28% compared to quasi-homogenous IM specimens.