Compressive sensing (CS) is a novel paradigm to recover a sparse signal in compressed domain. In some overcomplete dictionaries, most practical signals are sparse rather than orthonormal. Signal space greedy method can derive the optimal or near-optimal projections, making it possible to identify a few most relevant dictionary atoms of an arbitrary signal. More practically, such projections can be processed by standard CS recovery algorithms. This paper proposes a signal space subspace pursuit (SSSP) method to compute spare signal representations with overcomplete dictionaries, whenever the sensing matrix satisfies the restricted isometry property adapted to dictionary (D-RIP). Specifically, theoretical guarantees were provided to recover the signals from their measurements with overwhelming probability, as long as the sensing matrix satisfies the D-RIP. In addition, a thorough analysis was performed to minimize the number of measurements required for such guarantees. Simulation results demonstrate the validity of our hypothetical theory, as well as the superiority of the proposed approach.