Because nowadays structural engineers are willing to use or at least understand nonlinearities instead of simply avoiding them, there is a need for numerical tools performing analysis of nonlinear large-scale structures. Among these techniques, the harmonic balance (HB) method is certainly one of the most commonly used to study finite element models with reasonably complex nonlinearities. However, in its classical formulation the HB method is limited to the approximation of periodic solutions. For this reason, the present paper proposes to extend the method to the detection and tracking of codimension-1 bifurcations in the system parameters space. As an application, the frequency response of a spacecraft is studied, together with two nonlinear phenomena, namely quasiperiodic oscillations and detached resonance curves. This example illustrates how bifurcation tracking using the HB method can be employed as a promising design tool for detecting and eliminating such undesired behaviors.