1988
DOI: 10.2514/3.10025
|View full text |Cite
|
Sign up to set email alerts
|

Computation of rotational transonic flows using a decomposition method

Abstract: Any vector field may be decomposed, in a unique way, into an irrotational and a rotational part, if appropriate boundary conditions are imposed to the scalar and vector potentials introduced by the above decomposition. In the present work, the transformation is applied to the mass flux vector, in order to calculate two-dimensional, steady, rotational, transonic flows in arbitrarily shaped ducts and plane cascades. The whole procedure is discussed from an analytical and a numerical point of view, while finite d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2019
2019
2019
2019

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 13 publications
0
2
0
1
Order By: Relevance
“…En [19] se desarrolla un método de descomposición para modelar el flujo transónico sobre ductos de cualquier forma, reduciendo el problema a una solución numérica de la ecuación diferencial de Poisson con condiciones de frontera tipo Dirichlet.…”
Section: B Estado Del Arteunclassified
“…En [19] se desarrolla un método de descomposición para modelar el flujo transónico sobre ductos de cualquier forma, reduciendo el problema a una solución numérica de la ecuación diferencial de Poisson con condiciones de frontera tipo Dirichlet.…”
Section: B Estado Del Arteunclassified
“…1.3.2.1 Applications of the dual potential method The dual potential method has been applied to inviscid and viscous flow problems. Inviscid flow applica tions include the work of Rao et al (1989) and Giannakoglou et al (1988). Rao et al (1987) developed a three-dimensional inviscid rotational flow solver based on the dual potential method.…”
Section: Dual Potential Approachmentioning
confidence: 99%
“…They incorporated a boundary layer interaction scheme for viscous flow problems. Giannakoglou et al (1988) compute two-dimensional steady rotational transonic flows in arbitrarily shaped ducts and plane cascades. They decomposed the mass flux vector into two potentials.…”
Section: Dual Potential Approachmentioning
confidence: 99%