Abstract. The JSI TRIGA reactor has several irradiation facilities with well characterized neutron fields. The characterization was performed by measurements and by utilizing Monte Carlo particle transport computational methods. Because of this, JSI TRIGA has become a reference center for neutron irradiation of detectors for ATLAS experiment (CERN). Thorough γ characterization of the reactor is however yet to be performed. Current Monte Carlo particle transport code only account for the prompt generation of neutron induced γ rays, which have been characterized, but are neglecting the time dependent delayed part, which may in some cases amount to more then 30 % of total γ flux in an operation reactor, and is the only source of γ-rays after reactor shutdown. Several common approaches of modeling delayed γ-rays , namely D1S and R2S exist. In this paper an in-house developed R2S method code is described, coupling a Monte Carlo particle transport code MCNP6 and neutron activation code FISPACT-II, with intermediate steps performed by custom Python scripts. An example of its capabilities is presented in terms of evaluation of utilization of JSI TRIGA nuclear fuel as a viable γ-ray source. In the model, fresh nuclear fuel is considered and a silicon pipe sample is modeled in. Fuel activities, dose and kerma rates on the sample, as well as emitted γ-ray spectra and isotopic contribution to the contact dose are calculated and presented.