Angiogenesis, arteriogenesis, and pruning are revascularization processes essential to our natural vascular development and adaptation, as well as central players in the onset and development of pathologies such as tumoral growth and stroke recovery. Computational modeling allows for repeatable experimentation and exploration of these complex biological processes. In this review, we provide an introduction to the biological understanding of the vascular adaptation processes of sprouting angiogenesis, intussusceptive angiogenesis, anastomosis, pruning, and arteriogenesis, discussing some of the more significant contributions made to the computational modeling of these processes. Each computational model represents a theoretical framework for how biology functions, and with rises in computing power and study of the problem these frameworks become more accurate and complete. We highlight physiological, pathological, and technological applications that can be benefit from the advances performed by these models, and we also identify which elements of the biology are underexplored in the current state‐of‐the‐art computational models.
This article is categorized under:
Cancer > Computational Models
Cardiovascular Diseases > Computational Models