Borophene, a monolayer of boron, has risen as a new exciting two-dimensional (2D) material having extraordinary properties, including anisotropic metallic behavior and flexible (orientation-dependent) mechanical and optical properties. This review summarizes the current progress in the synthesis of borophene on various metal substrates, including Ag(110), Ag(100), Au(111), Ir(111), Al(111), and Cu(111), as well as heterostructuring of borophene. In addition, it discusses the mechanical, thermal, magnetic, electronic, optical, and superconducting properties of borophene and the effects of elemental doping, defects, and applied mechanical strains on these properties. Furthermore, the promising potential applications of borophene for gas sensing, energy storage and conversion, gas capture and storage applications, and possible tuning of the material performance in these applications through doping, formation of defects, and heterostructures are illustrated based on available theoretical studies. Finally, research and application challenges and the outlook of the whole borophene's field are given.