1985
DOI: 10.1017/s0022112085000118
|View full text |Cite
|
Sign up to set email alerts
|

Computations of overturning waves

Abstract: The numerical method of Longuet-Higgins & Cokelet (1976), for waves on deep water, is extended to account for a horizontal bottom contour, and used to investigate breaking waves in water of finite depth. It is demonstrated that a variety of overturning motions may be generated, ranging from the projection of a small-scale jet at the wave crest (of the type that might initiate a spilling breaker) to large-scale plunging breakers involving a significant portion of the wave. Although there seems to be a conti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

11
55
0
1

Year Published

1995
1995
2009
2009

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 111 publications
(67 citation statements)
references
References 3 publications
11
55
0
1
Order By: Relevance
“…Once generated, waves closely behave as irrotational inviscid flows, well simulated by potential flow theory up to overturning (New et al 1985;Grilli 1997;Dommermuth et al 1998). [Note, when using fully nonlinear free surface boundary conditions, one refers to these models as "Fully Nonlinear Potential Flow" models (FNPF).]…”
Section: Introductionmentioning
confidence: 83%
“…Once generated, waves closely behave as irrotational inviscid flows, well simulated by potential flow theory up to overturning (New et al 1985;Grilli 1997;Dommermuth et al 1998). [Note, when using fully nonlinear free surface boundary conditions, one refers to these models as "Fully Nonlinear Potential Flow" models (FNPF).]…”
Section: Introductionmentioning
confidence: 83%
“…The earlier researchers focused on 2D problems with a relatively simple computational domain, i.e. in deep water [33] and/or in a spatially periodic domain [34][35]. However, in the real sea, the seabed effects could be very evident and the spatially periodic problems are rare to see.…”
Section: Introductionmentioning
confidence: 99%
“…Ces efforts importants de recherche ont abouti à une meilleure connaissance de l'écoulement avant impact et dans la zone de surf dite «interne» quelques mètres au~delà de ce dernier. Dans le premier cas, l'écoulement est irrotationnel et le domaine liquide simplement connexe, autorisant le développement de modèles théoriques ou numériques reposant sur l'approximation du fluide parfait (voir par exemple New et al, 1985). Dans le second cas, l'écoulement est quasi-stationnaire (analogie avec un ressaut hydraulique propagatif) et la turbulence bien développée autorisant cette fois l'emploi de modèle statistique de turbulence (voir par exemple Svendsen & Madsen, 1984).…”
Section: Introductionunclassified