This study explores the creation and testing of a Fuzzy Inferencing System for automating preliminary referrals for autism diagnosis, utilizing membership functions aligned with the Autism Quotient 10-item questionnaire. Validated across three distinct datasets, the system demonstrated perfect accuracy in deterministic settings and an overall accuracy of 92.91% in a broad fuzzy dataset. The use of Fuzzy Logic reflects the complex and variable nature of autism diagnosis, suggesting its potential applicability in this field. While the system effectively categorized clear referral and non-referral scenarios, it faced challenges in accurately identifying cases requiring a second opinion. These results indicate the need for further refinement to enhance the efficiency and accuracy of preliminary autism screenings, pointing to future avenues for improving the system’s performance. The motivation behind this study is to address the diagnostic gap for high-functioning adults whose symptoms present in a more neurotypical manner. Many current deep learning approaches for diagnosing autism focus on quantitative datasets like fMRI and facial expressions, often overlooking behavioral traits. However, autism diagnosis still heavily relies on long histories and multi-stakeholder information from parents, teachers, doctors and behavioral experts. This research addresses the challenge of creating an automated system that can handle the nuances and variability inherent in ASD symptoms. The theoretical innovation lies in the novel application of Fuzzy Logic to interpret these subtle diagnostic indicators, providing a more systematic approach compared to traditional methods. By bridging the gap between subjective clinical evaluations and objective computational techniques, this study aims to enhance the preliminary screening process for ASD.