Abstract. The face is an important part of the identity of a person. Numerous applications benefit from the recent advances in prediction of face attributes, including biometrics (like age, gender, ethnicity) and accessories (eyeglasses, hat). We study the attributes' relations to other attributes and to face images and propose prediction models for them. We show that handcrafted features can be as good as deep features, that the attributes themselves are powerful enough to predict other attributes and that clustering the samples according to their attributes can mitigate the training complexity for deep learning. We set new state-of-the-art results on two of the largest datasets to date, CelebA and Facebook BIG5, by predicting attributes either from face images, from other attributes, or from both face and other attributes. Particularly, on Facebook dataset, we show that we can accurately predict personality traits (BIG5) from tens of 'likes' or from only a profile picture and a couple of 'likes' comparing positively to human reference.