Ion beam analysis (IBA) is a cluster of techniques including Rutherford and non-Rutherford backscattering spectrometry, and particle-induced X-ray emission (PIXE). Recently, the ability to treat multiple IBA techniques (including PIXE) self-consistently has been demonstrated. The utility of IBA for accurately depth profiling thin films is critically reviewed. As an important example of IBA, three laboratories have independently measured a silicon sample implanted with a fluence of nominally 5.1015As/cm2 at an unprecedented absolute accuracy. Using 1.5 MeV 4He+ Rutherford backscattering spectrometry (RBS), each lab has demonstrated a combined standard uncertainty around 1% (coverage factor k=1) traceable to an Sb-implanted certified reference material through the silicon electronic stopping power. The uncertainty budget shows that this accuracy is dominated by the knowledge of the electronic stopping, but that special care must also be taken to accurately determine the electronic gain of the detection system and other parameters. This RBS method is quite general and can be used routinely, to accurately validate ion implanter charge collection systems, to certify SIMS standards, and for other applications. The generality of application of such methods in IBA is emphasised: if RBS and PIXE data are analysed self-consistently then the resulting depth profile inherits the accuracy and depth resolution of RBS and the sensitivity and elemental discrimination of PIXE