Abstract-Several models for the simulation of photon elastic scattering are quantitatively evaluated with respect to a large collection of experimental data retrieved from the literature. They include models based on the form factor approximation, on S-matrix calculations and on analytical parameterizations; they exploit publicly available data libraries and tabulations of theoretical calculations. Some of these models are currently implemented in general purpose Monte Carlo systems; some have been implemented and evaluated for the first time in this paper for possible use in Monte Carlo particle transport. The analysis mainly concerns the energy range between 5 keV and a few MeV. The validation process identifies the newly implemented model based on second order S-matrix calculations as the one best reproducing experimental measurements. The validation results show that, along with Rayleigh scattering, additional processes, not yet implemented in Geant4 nor in other major Monte Carlo systems, should be taken into account to realistically describe photon elastic scattering with matter above 1 MeV. Evaluations of the computational performance of the various simulation algorithms are reported along with the analysis of their physics capabilities.
Backscattering is a sensitive probe of the accuracy of electron scattering
algorithms implemented in Monte Carlo codes. The capability of the Geant4
toolkit to describe realistically the fraction of electrons backscattered from
a target volume is extensively and quantitatively evaluated in comparison with
experimental data retrieved from the literature. The validation test covers the
energy range between approximately 100 eV and 20 MeV, and concerns a wide set
of target elements. Multiple and single electron scattering models implemented
in Geant4, as well as preassembled selections of physics models distributed
within Geant4, are analyzed with statistical methods. The evaluations concern
Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the
range of Geant4 versions, not always in the direction of better compatibility
with experiment. Goodness-of-fit tests complemented by categorical analysis
tests identify a configuration based on Geant4 Urban multiple scattering model
in Geant4 version 9.1 and a configuration based on single Coulomb scattering in
Geant4 10.0 as the physics options best reproducing experimental data above a
few tens of keV. At lower energies only single scattering demonstrates some
capability to reproduce data down to a few keV. Recommended preassembled
physics configurations appear incapable of describing electron backscattering
compatible with experiment. With the support of statistical methods, a
correlation is established between the validation of Geant4-based simulation of
backscattering and of energy deposition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.