The matching performance of automated face recognition has significantly improved over the past decade. At the same time several challenges remain that significantly affect the deployment of such systems in security applications. In this work, we study the impact of a commonly used face altering technique that has received limited attention in the biometric literature, viz., non-permanent facial makeup. Towards understanding its impact, we first assemble two databases containing face images of subjects, before and after applying makeup. We present experimental results on both databases that reveal the effect of makeup on automated face recognition and suggest that this simple alteration can indeed compromise the accuracy of a biometric system. While these are early results, our findings clearly indicate the need for a better understanding of this face altering scheme and the importance of designing algorithms that can successfully overcome the obstacle imposed by the application of facial makeup.