Represented in a Morphable Model, 3D faces follow curved trajectories in face space as they age. We present a novel algorithm that computes the individual aging trajectories for given faces, based on a non-linear function that assigns an age to each face vector. This function is learned from a database of 3D scans of teenagers and adults using support vector regression. To apply the aging prediction to images of faces, we reconstruct a 3D model from the input image, apply the aging transformation on both shape and texture, and then render the face back into the same image or into images of other individuals at the appropriate ages, for example images of older children. Among other applications, our system can help to find missing children
Finding the best makeup for a given human face is an art in its own right. Experienced makeup artists train for years to be skilled enough to propose a best-fit makeup for an individual. In this work we propose a system that automates this task. We acquired the appearance of 56 human faces, both without and with professional makeup. To this end, we use a controlled-light setup, which allows to capture detailed facial appearance information, such as diffuse reflectance, normals, subsurface-scattering, specularity, or glossiness. A 3D morphable face model is used to obtain 3D positional information and to register all faces into a common parameterization. We then define makeup to be the change of facial appearance and use the acquired database to find a mapping from the space of human facial appearance to makeup. Our main application is to use this mapping to suggest the best-fit makeup for novel faces that are not in the database. Further applications are makeup transfer, automatic rating of makeup, makeup-training, or makeup-exaggeration. As our makeup representation captures a change in reflectance and scattering, it allows us to synthesize faces with makeup in novel 3D views and novel lighting with high realism. The effectiveness of our approach is further validated in a user-study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.