Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.
During the last years the concept of multi-resolution modeling has gained special attention in many fields of computer graphics and geometric modeling. In this paper we generalize powerful multiresolution techniques to arbitrary triangle meshes without requiring subdivision connectivity. Our major observation is that the hierarchy of nested spaces which is the structural core element of most multi-resolution algorithms can be replaced by the sequence of intermediate meshes emerging from the application of incremental mesh decimation. Performing such schemes with local frame coding of the detail coefficients already provides effective and efficient algorithms to extract multi-resolution information from unstructured meshes. In combination with discrete fairing techniques, i.e., the constrained minimization of discrete energy functionals, we obtain very fast mesh smoothing algorithms which are able to reduce noise from a geometrically specified frequency band in a multiresolution decomposition. Putting mesh hierarchies, local frame coding and multi-level smoothing together allows us to propose a flexible and intuitive paradigm for interactive detail-preserving mesh modification. We show examples generated by our mesh modeling tool implementation to demonstrate its functionality.
Generation and animation of realistic humans is an essential part of many projects in today's media industry. Especially, the games and special effects industry heavily depend on realistic human animation. In this work a unified model that describes both, human pose and body shape is introduced which allows us to accurately model muscle deformations not only as a function of pose but also dependent on the physique of the subject. Coupled with the model's ability to generate arbitrary human body shapes, it severely simplifies the generation of highly realistic character animations. A learning based approach is trained on approximately 550 full body 3D laser scans taken of 114 subjects. Scan registration is performed using a non-rigid deformation technique. Then, a rotation invariant encoding of the acquired exemplars permits the computation of a statistical model that simultaneously encodes pose and body shape. Finally, morphing or generating meshes according to several constraints simultaneously can be achieved by training semantically meaningful regressors.
Figure 1: A sequence of poses captured from eight video recordings of a capoeira turn kick. Our algorithm delivers spatio-temporally coherent geometry of the moving performer that captures both the time-varying surface detail as well as details in his motion very faithfully. AbstractThis paper proposes a new marker-less approach to capturing human performances from multi-view video. Our algorithm can jointly reconstruct spatio-temporally coherent geometry, motion and textural surface appearance of actors that perform complex and rapid moves. Furthermore, since our algorithm is purely meshbased and makes as few as possible prior assumptions about the type of subject being tracked, it can even capture performances of people wearing wide apparel, such as a dancer wearing a skirt. To serve this purpose our method efficiently and effectively combines the power of surface-and volume-based shape deformation techniques with a new mesh-based analysis-through-synthesis framework. This framework extracts motion constraints from video and makes the laser-scan of the tracked subject mimic the recorded performance. Also small-scale time-varying shape detail is recovered by applying model-guided multi-view stereo to refine the model surface. Our method delivers captured performance data at high level of detail, is highly versatile, and is applicable to many complex types of scenes that could not be handled by alternative marker-based or marker-free recording techniques.
We present a new shape representation, the multi-level partition of unity implicit surface, that allows us to construct surface models from very large sets of points. There are three key ingredients to our approach: 1) piecewise quadratic functions that capture the local shape of the surface, 2) weighting functions (the partitions of unity) that blend together these local shape functions, and 3) an octree subdivision method that adapts to variations in the complexity of the local shape.Our approach gives us considerable flexibility in the choice of local shape functions, and in particular we can accurately represent sharp features such as edges and corners by selecting appropriate shape functions. An error-controlled subdivision leads to an adaptive approximation whose time and memory consumption depends on the required accuracy. Due to the separation of local approximation and local blending, the representation is not global and can be created and evaluated rapidly. Because our surfaces are described using implicit functions, operations such as shape blending, offsets, deformations and CSG are simple to perform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.