We present a new shape representation, the multi-level partition of unity implicit surface, that allows us to construct surface models from very large sets of points. There are three key ingredients to our approach: 1) piecewise quadratic functions that capture the local shape of the surface, 2) weighting functions (the partitions of unity) that blend together these local shape functions, and 3) an octree subdivision method that adapts to variations in the complexity of the local shape.Our approach gives us considerable flexibility in the choice of local shape functions, and in particular we can accurately represent sharp features such as edges and corners by selecting appropriate shape functions. An error-controlled subdivision leads to an adaptive approximation whose time and memory consumption depends on the required accuracy. Due to the separation of local approximation and local blending, the representation is not global and can be created and evaluated rapidly. Because our surfaces are described using implicit functions, operations such as shape blending, offsets, deformations and CSG are simple to perform.
We present a new shape representation, the multi-level partition of unity implicit surface, that allows us to construct surface models from very large sets of points. There are three key ingredients to our approach: 1) piecewise quadratic functions that capture the local shape of the surface, 2) weighting functions (the partitions of unity) that blend together these local shape functions, and 3) an octree subdivision method that adapts to variations in the complexity of the local shape.Our approach gives us considerable flexibility in the choice of local shape functions, and in particular we can accurately represent sharp features such as edges and corners by selecting appropriate shape functions. An error-controlled subdivision leads to an adaptive approximation whose time and memory consumption depends on the required accuracy. Due to the separation of local approximation and local blending, the representation is not global and can be created and evaluated rapidly. Because our surfaces are described using implicit functions, operations such as shape blending, offsets, deformations and CSG are simple to perform.
We propose a simple and effective method for detecting view-and scale-independent ridge-valley lines defined via first-and secondorder curvature derivatives on shapes approximated by dense triangle meshes. A high-quality estimation of high-order surface derivatives is achieved by combining multi-level implicit surface fitting and finite difference approximations. We demonstrate that the ridges and valleys are geometrically and perceptually salient surface features and, therefore, can be potentially used for shape recognition, coding, and quality evaluation purposes.
Compression is an important field of digital image processing where well-engineered methods with high performance exist. Partial differential equations (PDEs), however, have not much been explored in this context so far. In our paper we introduce a novel framework for image compression that makes use of the interpolation qualities of edge-enhancing diffusion. Although this anisotropic diffusion equation with a diffusion tensor was originally proposed for image denoising, we show that it outperforms many other PDEs when sparse scattered data must be interpolated. To exploit this property for image compression, we consider an adaptive triangulation method for remov- ing less significant pixels from the image. The remaining points serve as scattered interpolation data for the diffusion process. They can be coded in a compact way that reflects the B-tree structure of the triangulation. We supplement the coding step with a number of amendments such as error threshold adaptation, diffusion-based point selection, and specific quantisation strategies. Our experiments illustrate the usefulness of each of these modifications. They demonstrate that for high compression rates, our PDE-based approach does not only give far better results than the widelyused JPEG standard, but can even come close to the quality of the highly optimised JPEG2000 codec.
We propose a fast and robust method for detecting crest lines on surfaces approximated by dense triangle meshes. The crest lines, salient surface features defined via first-and second-order curvature derivatives, are widely used for shape matching and interrogation purposes. Their practical extraction is difficult because it requires good estimation of high-order surface derivatives. Our approach to the crest line detection is based on estimating the curvature tensor and curvature derivatives via local polynomial fitting.Since the crest lines are not defined in the surface regions where the surface focal set (caustic) degenerates, we introduce a new thresholding scheme which exploits interesting relationships between curvature extrema, the so-called MVS functional of Moreton and Sequin, and Dupin cyclides, An application of the crest lines to adaptive mesh simplification is also considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.