2023
DOI: 10.1016/j.measen.2023.100751
|View full text |Cite
|
Sign up to set email alerts
|

Computer vision based healthcare system for identification of diabetes & its types using AI

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
3
2

Relationship

0
9

Authors

Journals

citations
Cited by 16 publications
(4 citation statements)
references
References 11 publications
0
3
0
1
Order By: Relevance
“…Son aliados de valor para apoyar el diagnóstico, generar propuestas de tratamiento y optimizar la asignación y distribución de recursos en el pna. (Sharma et al, 2023;Wu et al, 2023). Aunque su función es enriquecer y facilitar la toma de decisiones, no deben ni pueden reemplazar a los profesionales de la salud, quienes, con su calidez, criterio, empatía y experiencia, hacen la diferencia.…”
Section: Sistemas Expertosunclassified
“…Son aliados de valor para apoyar el diagnóstico, generar propuestas de tratamiento y optimizar la asignación y distribución de recursos en el pna. (Sharma et al, 2023;Wu et al, 2023). Aunque su función es enriquecer y facilitar la toma de decisiones, no deben ni pueden reemplazar a los profesionales de la salud, quienes, con su calidez, criterio, empatía y experiencia, hacen la diferencia.…”
Section: Sistemas Expertosunclassified
“…Location-Based: These protocols don't assume any prior knowledge of the sensor nodes' coordinates. Using Global Positioning System (GPS) coordinates, sensor node locations may be determined; this data will then be utilised in conjunction with floods to determine the best possible route [13]. Data Centric Protocols: These protocols are dependent on the sequence number of the desired data and known to be querybased protocols.…”
Section: ░ 2 Literature Surveymentioning
confidence: 99%
“…Considering the present situation, it is imperative to develop mechanisms that are more adaptable, precise, trustworthy, and responsive. Sharma et al ( 5 ) propose a ground-breaking approach to forecast accuracy using machine learning and AI. The suggested framework classifies diabetes according to the indicators in the data set, where each row represents a system rule that has to be comprehended and assembled using an attribute.…”
Section: Introductionmentioning
confidence: 99%