The Internet of Things (IoT) environment must prioritise security because of the IoT’s significant attack susceptibility for a variety of reasons. The IoT attack detection technique or mitigation procedure is the extent of the currently available solutions. However, there are fewer autonomous security provider approaches available, and they are inappropriate for the IoT environment’s evolving threats. Because of this, there has to be a security system in place that can detect and counteract both known and unknown threats for the increasing number of IoT devices. Deep Learning (DL) based intrusion detection systems does not consider attack signatures and normal behavior to obtain detection rules, it requires large data sets for training and takes a longer time to train the data. Many a time, insufficient dataset configuration prompts the minimization of a learning calculation, bringing about over fitting and helpless grouping rates. The goal of the proposed study is to create and implement a machine learning-based self-protection system to safeguard the IoT environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.