A full set of physical and thermophysical properties for lead-free solder (LFS) alloys have been calculated, including liquidus/solidus temperatures, fraction solid, density, coefficient of thermal expansion, thermal conductivity, YoungÕs modulus, viscosity, and liquid surface tension, all as a function of composition and temperature (extending into the liquid state). The results have been extensively validated against data available in the literature. A detailed comparison of the properties of two LFS alloys Sn-20In-2.8Ag and Sn-5.5Zn-4.5In-3.5Bi with Sn-37Pb has been made to show the utility and need for calculations that cover a wide range of properties, including the need to consider the effect of nonequilibrium cooling. The modeling of many of these properties follows well-established procedures previously used in JMatPro software for a range of structural alloys. This paper describes an additional procedure for the calculation of the liquid surface tension for multicomponent systems, based on the Butler equation. Future software developments are reviewed, including the addition of mechanical properties, but the present calculations can already make a useful contribution to the selection of appropriate new LFS alloys.